HT63

MANUAL DE INSTRUÇÕES

<u>inaice:</u>		
1. PF	RECAUÇÕES E MEDIDAS DE SEGURANÇA	2
1.1.	Instruções preliminares	2
1.2.	Durante a utilização	3
1.3.	Após a utilização	3
1.4.	Definição de Categoria de medida (Sobretensão)	3
2. DE	ESCRIÇÃO GERAL	
2.1.	Instrumentos de misura a Valor medio e a Valor eficaz real	
2.2.	Definição de Valor eficaz real e Fator de crista	
3. PF	REPARÁÇÃO PARA A SUA UTILIZAÇÃO	
3.1.	Controlos iniciais	
3.2.	Alimentação do instrumento	
3.3.	Armazenamento	5
4. IN:	STRUÇÕES DE FUNCIONAMENTO	6
4.1.		
4.2.		
4.2	.1. Botão AUTO HOLD	
4.2		
4.2		
4.2		
4.2		
4.2		
4.2	•	
	.8. Função CA+CC	
	1.10. Desativação da função de Desligar automático	
	STRUÇÕES DE FUNCIONAMENTO	
5.1.	Medição de tensões CC	
5.2.	Medição de tensões CA, CA+CC	
5.3.	Medição de tensões CA, CC, CA+CC com baixa impedância (LoZ)	
5.4.	Medição de Frequências e Ciclo de Trabalho (Duty Cycle)	
5.5.	Medição de Resistências e Teste de Continuidade	13
5.6.	Teste de Díodos	
5.7.	Medição de Capacidades	
5.8.	Medição de Temperaturas com sonda K	16
5.9.	Medição de Correntes CC e leitura 4-20mA%	
5.10.	•	
5.11.		
	ANUTENÇÃO	
6.1.	Substituição das pilhas e fusíveis internos	
6.2.	Limpeza do instrumento	
6.3.	Fim de vida	
	SPECIFICAÇÕES TÉCNICAS	
7.1.	•	
	.1. Normas de referência	
7.1		
7.2.	Ambiente	
7.2		
7.3.	Acessórios	24
_	.1. Acessórios fornecidos	
	3.2. Acessórios opcionais	
	SSISTÊNCIA	
8.1.	Condições de garantia	
8.2.	Assistência	25

1. PRECAUÇÕES E MEDIDAS DE SEGURANÇA

Este instrumento foi construído em conformidade com a diretiva IEC/EN61010-1 referente aos instrumentos de medida eletrónicos. Para Sua segurança e para evitar danificar o instrumento, deve seguir os procedimentos descritos neste manual e ler com especial atenção todas as notas precedidas do símbolo ...

Antes e durante a execução das medições seguir escrupulosamente as seguintes indicações:

- Não efetuar medições em ambientes húmidos.
- Não efetuar medições na presença de gases ou materiais explosivos, combustíveis ou em ambientes com pó.
- Evitar contactos com o circuito em exame quando não se efetuam medições.
- Evitar contactos com partes metálicas expostas, com terminais de medida inutilizados, circuitos, etc.
- Não efetuar qualquer medição quando se detetam anomalias no instrumento tais como: deformações, roturas, derrame de substâncias, ausência de display, etc.
- Ter particular atenção quando se efetuam medições de tensões superiores a 20V visto que existe o risco de choques elétricos.

Neste manual e no instrumento são utilizados os seguintes símbolos:

Atenção: seguir as instruções indicadas no manual; um uso impróprio poderá causar danos no instrumento ou nos seus componentes.

Instrumento com duplo isolamento

Tensão CA ou Corrente CA

Tensão ou Corrente CC

Referência de terra

1.1. INSTRUÇÕES PRELIMINARES

- Este instrumento foi projetado para ser utilizado em ambientes c/ nível de poluição 2.
- Pode ser utilizado para efetuar medições de TENSÃO e CORRENTE em instalações com CAT IV 600V, CAT III 1000V.
- Seguir as normais regras de segurança previstas para os trabalhos sob tensão e a utilizar os DPI previstos orientados para a proteção contra correntes perigosas e proteger o instrumento contra uma utilização errada.
- Nos casos em que a falta de indicação da presença de tensão possa constituir um risco para o operador, efetuar sempre uma medição de continuidade antes de efetuar a medição sob tensão para confirmar se a ligação está correta e o estado das ponteiras.
- Só as ponteiras fornecidas com o instrumento garantem as normas de segurança.
 Estas devem estar em boas condições e substituídas, se necessário, por modelos idênticos.
- Não efetuar medições em circuitos que superem os limites de tensão especificados.
- Não efetuar medições em condições ambientais fora dos limites indicados no § 6.2.1.
- Verificar se as pilhas estão inseridas corretamente.
- Verificar se o display LCD e o seletor indicam a mesma função.

1.2. DURANTE A UTILIZAÇÃO

Ler atentamente as recomendações e as instruções seguintes:

ATENÇÃO

O não cumprimento das Advertências e/ou Instruções pode danificar o instrumento e/ou os seus componentes ou colocar em perigo o operador.

- Antes de mexer no seletor, retirar as ponteiras de medida do circuito em exame
- Quando o instrumento está conectado ao circuito em exame nunca tocar em qualquer terminal inutilizado
- Evitar a medição de resistências na presença de tensões externas. Mesmo que o instrumento esteja protegido, uma tensão excessiva poderá causar um mau funcionamento do mesmo
- Se, durante uma medição, o valor ou o sinal da grandeza em exame permanecem constantes, verificar se está ativa a função HOLD.

1.3. APÓS A UTILIZAÇÃO

- Depois de terminar as medições, colocar o seletor em OFF de modo a desligar o instrumento
- Quando se prevê não utilizar o instrumento durante um longo período retirar as pilhas.

1.4. DEFINIÇÃO DE CATEGORIA DE MEDIDA (SOBRETENSÃO)

A norma CEI 61010-1: Prescrições de segurança para aparelhos elétricos de medida, controlo e para utilização em laboratório, Parte 1: Prescrições gerais, define o que se entende por categoria de medida, vulgarmente chamada categoria de sobretensão. No § 6.7.4: Circuitos de medida, indica:

(OMISSOS)

os circuitos estão subdivididos nas seguintes categorias de medida:

- A categoria de medida IV serve para as medições efetuadas sobre uma fonte de uma instalação de baixa tensão.
 - o Exemplo: contadores elétricos e de medida sobre dispositivos primários de proteção das sobrecorrentes e sobre a unidade de regulação da ondulação.
- A categoria de medida III serve para as medições efetuadas em instalações interiores de edifícios.
 - Exemplo: medições sobre painéis de distribuição, disjuntores, cablagens, incluídos os cabos, os barramentos, as caixas de junção, os interruptores, as tomadas das instalações fixas e os aparelhos destinados ao uso industrial e outras aparelhagens, por exemplo os motores fixos com ligação à instalação fixa.
- A categoria de medida II serve para as medições efetuadas em circuitos ligados diretamente às instalações de baixa tensão.
 - Exemplo: medições em aparelhagens para uso doméstico, utensílios portáteis e aparelhos similares.
 - A categoria de medida I serve para as medições efetuadas em circuitos não ligados diretamente à REDE DE DISTRIBUIÇÃO. Exemplo: medições sobre não derivados da REDE e derivados da REDE mas com proteção especial (interna). Neste último caso, as solicitações de transitórios são variáveis, por este motivo (OMISSOS) torna-se necessário que o utente conheça a capacidade de resistência aos transitórios por parte da aparelhagem.

2. DESCRIÇÃO GERAL

O instrumento executa as seguintes medições:

- Tensão CC / CA, CA+CC TRMS
- Tensão CC / CA / CA+CC TRMS com baixa impedância (LoZ)
- Corrente CC / CA / CA+CC TRMS
- Corrente CC / CA / CA+CC TRMS com transdutor com pinça
- Visualização 4-20mA%
- Resistência e Teste de Continuidade
- Teste de Díodos
- Capacidade
- Frequência da corrente e da tensão
- Ciclo de Trabalho (Duty Cycle)
- Temperatura com sonda K

Cada uma destas funções pode ser selecionada através do respetivo seletor. Além disso, existem os botões de funções (consultar o § 4.2), gráfico de barras analógico e retroiluminação. O instrumento também possui a função de Desligar Automático (desativável) que desliga automaticamente o instrumento decorridos cerca de 15 minutos da última pressão dos botões de funções ou rotação do seletor. Para voltar a ligar o instrumento rodar o seletor.

2.1. INSTRUMENTOS DE MISURA A VALOR MEDIO E A VALOR EFICAZ REAL

Os instrumentos de medida de grandezas alternadas dividem-se em 2 grandes famílias:

- Instrumentos de VALOR MÉDIO: instrumentos que medem apenas o valor da onda à frequência fundamental (50 ou 60 HZ)
- Instrumentos de VALOR EFICAZ REAL também ditos TRMS (True Root Mean Square value): instrumentos que medem o valor eficaz real da grandeza em exame.

Na presença de uma onda perfeitamente sinusoidal, as duas famílias de instrumentos fornecem resultados idênticos. Na presença de ondas distorcidas, ao contrário, as leituras diferem. Os instrumentos de valor médio fornecem apenas o valor eficaz da onda fundamental, os instrumentos de valor eficaz real fornecem, por sua vez, o valor eficaz de toda a onda, harmónicos incluídos (dentro da banda passante do instrumento). Portanto, medindo a mesma grandeza com instrumentos das duas famílias, os valores obtidos só são idênticos se a onda é puramente sinusoidal, no caso de ser distorcida, os instrumentos de valor eficaz real fornecem valores superiores em relação às leituras dos instrumentos de valor médio.

2.2. DEFINIÇÃO DE VALOR EFICAZ REAL E FATOR DE CRISTA

O valor eficaz para a corrente é assim definido: "Num tempo igual a um período, uma corrente alterna com valor eficaz da intensidade de 1A, circulando sobre uma resistência, dissipa a mesma energia que seria dissipada, no mesmo tempo, por uma corrente contínua com intensidade de 1A". Desta definição obtém-se a expressão numérica:

$$G = \sqrt{\frac{1}{T}} \int_{t_0}^{t_0+T} g^2(t)dt$$
 O valor eficaz é indicado como RMS (root mean square value)

O Fator de crista é definido como a razão entre o Valor de Pico de um sinal e o seu Valor Eficaz: CF (G)= $\frac{G_p}{G_{RMS}}$ Este valor varia com a forma de onda do sinal, para uma onda

puramente sinusoidal é $\sqrt{2}$ =1.41. Na presença de distorções, o Fator de crista assume valores tanto maiores quanto mais elevada for a distorção da onda.

3. PREPARAÇÃO PARA A SUA UTILIZAÇÃO

3.1. CONTROLOS INICIAIS

O instrumento, antes de ser expedido, foi controlado do ponto de vista elétrico e mecânico. Foram tomadas todas as precauções possíveis para que o instrumento seja entregue sem danos.

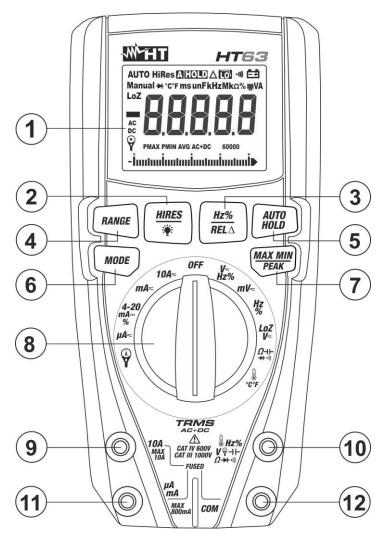
Todavia, aconselha-se a efetuar uma verificação geral ao instrumento para se certificar de possíveis danos ocorridos durante o transporte. No caso de se detetarem anomalias, deve-se contactar, imediatamente, o fornecedor.

Verificar, ainda, se a embalagem contém todos os componentes indicados no § 6.3.1. No caso de discrepâncias, contactar o fornecedor.

Se, por qualquer motivo, for necessário devolver o instrumento, deve-se seguir as instruções indicadas no § 7.

3.2. ALIMENTAÇÃO DO INSTRUMENTO

O instrumento é alimentado com 4x1.5V pilhas alcalinas tipo AAA IEC LR03 incluídas na embalagem. Quando as pilhas estão descarregadas aparece no display o símbolo "===""." Para substituir as pilhas consultar o § 6.1.


3.3. ARMAZENAMENTO

Para garantir medições precisas, após um longo período de armazenamento em condições ambientais extremas, deve-se aguardar que o instrumento retorne às condições normais (ver as especificações ambientais listadas no § 6.2.1).

4. INSTRUÇÕES DE FUNCIONAMENTO

4.1. DESCRIÇÃO DO INSTRUMENTO

LEGENDA:

- 1. Display LCD
- 2. Botão HIRES/Ÿ
- 3. Botão Hz% / RELA
- 4. Botão RANGE
- 5. Botão AUTO HOLD
- 6. Botão MODE
- 7. Botão MAXMIN/PEAK
- 8. Seletor de funções
- 9. Terminal de entrada 10A
- 10. Terminal de entrada

 Hz% V→⊢Ω→+**))
- 11.Terminal de entrada **mAμA**
- 12. Terminal de entrada COM

Fig. 1: Descrição do instrumento

4.2. DESCRIÇÃO DOS BOTÕES DE FUNÇÕES

4.2.1. Botão AUTO HOLD

A pressão do botão **A HOLD** ativa a manutenção do valor da grandeza apresentada no display. A seguir à pressão deste botão aparece no display a inscrição "**HOLD**". Premir novamente o botão **HOLD** para sair da função.

Premir durante algum tempo o botão **A HOLD** para ativar/desativar a função de "AutoHOLD". A mensagem "A HOLD" aparece no display. Com esta função ativa o instrumento executa a manutenção do valor da grandeza atualizando-o no display automaticamente quando um novo valor estável é detetado e emitindo um som durante a operação. Esta função é útil no caso de sinais na entrada tendo rápidas oscilações.

4.2.2. Botão RANGE

Premir o botão **RANGE** para ativar o modo manual desativando a função de Escala Automática (Autorange). O símbolo "AUTO" desaparece da parte superior esquerda do display. No modo manual premir o botão **RANGE** para alterar a escala de medida notando o deslocamento do respetivo ponto decimal. O botão **RANGE** não fica ativo nas posições

Hz%, C°F e 4-20mA. No modo Escala Automática (Autorange) o instrumento seleciona a escala mais apropriada para efetuar a medição. Se uma leitura é mais alta do que o valor máximo mensurável, aparece no display a indicação "O.L". Premir o botão RANGE durante mais de 1 segundo para sair do modo manual e retornar ao modo Escala Automática.

4.2.3. Botão MAX MIN/PEAK

Uma pressão do botão **MAX MIN/PEAK** ativa a deteção dos valores máximo (MAX), mínimo (MIN) e médio (AVG) da grandeza em exame. Os valores são atualizados continuamente e apresentam-se ciclicamente após uma nova pressão do mesmo botão. O botão **MAX MIN/PEAK** não funciona quando a função HOLD está ativa. O botão **MAX**

MIN/PEAK não está ativo nas posições ➡, •)), → ⊢, Hz%, Ѿ°C°F e 4-20mA—...%. Premir o botão MAX MIN/PEAK durante mais de 1 segundo ou mexer no seletor para sair da função.

Uma pressão prolongada durante 2 segundos do botão **MAX MIN/PEAK** ativa a deteção dos valores de pico Máximo e Mínimo da Tensão e Corrente CA com tempo de resposta 1ms. Os valores são atualizados continuamente e apresentam-se ciclicamente após uma nova pressão do mesmo botão. O display apresenta o símbolo associado à função selecionada: "PMAX" para o valor de pico máximo, "PMIN" para o valor de pico mínimo. E a função de Desligar Automático (Auto Power OFF) é automaticamente desativada.

Premir o botão **MAX MIN/PEAK** durante mais de 2 segundos ou mexer no seletor para sair da função.

4.2.4. Botão Hz%/REL∆

Premir o botão Hz%/REL∆ para a seleção das medições de frequência e Ciclo de Trabalho (Duty Cycle) nas posições V≂Hz%, V, e Hz% do seletor. A escala de frequência é diferente nas várias posições.

A pressão prolongada do botão **Hz%/REL**Δ permite a ativação da medição relativa. O instrumento coloca em zero o display e guarda o valor apresentado o qual será o valor de referência para as medições seguintes. O símbolo "Δ" aparece no display. Esta função

não está ativa nas posições ♣, •)), Hz%, ♣°C°F e 4-20mA---%. Premir novamente, durante algum tempo, o botão Hz%/REL∆ para sair da função

4.2.5. Botão MODE

A pressão do botão **MODE** permite a seleção de uma dupla função existente no seletor. Em especial ele está ativo na posição ΩCAP→+**)) para a seleção das medições de Teste de Díodos, Teste de Continuidade, capacidade e a medição de resistência, na posição ©*C*F para a seleção da medição de temperatura em °C ou °F, V¬Hz%, mV¬, LoZV¬ (consultar o § 4.2.7), mA¬, μA¬ e V para a seleção das medições CA, CC e CA+CC (consultar o § 4.2.8). Na posição V¬Hz% a pressão do botão MODE ativa/desativa a função "¬ que permite a leitura da tensão CA com um filtro passa baixo capaz de reduzir os efeitos de distúrbio no sinal. Nesta condição o instrumento passa para a modalidade Manual.

4.2.6. Botão HIRES/Ÿ

Premir o botão **HIRES/** para ativar/desativar o modo de funcionamento em alta resolução do instrumento e a mensagem "HiRes" aparece no display. Nesta situação o instrumento passa a 4½ dígitos (60000 pontos) para um maior detalhe na leitura dos dados. A função não está ativa na posição **C°F** e na Medição de Capacidades. Premir novamente o botão **HIRES/** para voltar para a visualização standard a 3½ dígitos (6000

novamente o botão **HIRES/** Para voltar para a visualização standard a 3½ dígitos (6000 pontos). Premir durante algum tempo o botão **HIRES/** Para ativar/desativar a retroiluminação do display. Esta função está ativa em qualquer posição do seletor e desativa-se automaticamente decorridos cerca de 10s.

4.2.7. Função LoZ

Este modo permite efetuar a medição de tensões CA/CC com uma baixa impedância de entrada de modo a eliminar as leituras erradas provocadas por tensões parasitas resultantes de acoplamentos do tipo capacitivo.

Inserindo o instrumento entre os condutores de fase e terra, devido à baixa impedância do instrumento na medição, as proteções com diferencial (RCD) podem disparar durante a execução do teste. Quando se pretende utilizar este teste, efetuar preliminarmente uma medição de pelo menos 5s entre fase e neutro na presença de tensão.

4.2.8. Função CA+CC

O instrumento é capaz de medir a eventual presença de componentes alternados sobrepostos a uma genérica tensão ou corrente contínua. Isto pode ser útil na medição de sinais impulsivos típicos de cargas não lineares (ex: aparelhos de soldar, fornos elétricos, etc...).

4.2.9. Mensagem LEAD no display

Com o instrumento desligado (**OFF**), nas posições **10A**, μ **A**, μ **A**, μ **A** e ψ é emitido um curto som e a mensagem "LEAD" aparece durante segundos no display para avisar que é necessário introduzir as ponteiras para as medições de corrente.

4.2.10. Desativação da função de Desligar automático

Para preservar as pilhas internas, o instrumento desliga-se automaticamente após cerca de 15 minutos de não utilização. Para desativar o desligar automático proceder do seguinte modo:

- Desligar o instrumento (OFF).
- Mantendo premido o botão MODE ligar o instrumento rodando o seletor. A mensagem "10FF" aparece no display.
- Desligar e voltar a ligar o instrumento para ativar novamente a função.

5. INSTRUÇÕES DE FUNCIONAMENTO

5.1. MEDIÇÃO DE TENSÕES CC

\triangle

ATENÇÃO

A tensão máxima CC na entrada é 1000V. Não medir tensões que excedam os limites indicados neste manual. A superação dos limites de tensão poderá causar choques elétricos no utilizador e danos no instrumento.

Fig. 2: Uso do instrumento para a medição de Tensões CC

- 1. Selecionar a posição V≂Hz% ou mV≂.
- 2. Inserir o cabo vermelho no terminal de entrada Hz% V→ ⊢Ω→ ⊕ e o cabo preto no terminal de entrada COM
- 3. Colocar a ponteira vermelha e a ponteira preta respetivamente nos pontos com potencial positivo e negativo do circuito em exame (ver Fig. 2). O valor da tensão é apresentado no display
- 4. Se no display aparecer a mensagem "O.L" selecionar uma escala mais elevada.
- 5. A visualização do símbolo "-" no display do instrumento indica que a tensão tem sentido oposto em relação à conexão da Fig. 2.
- 6. Para o uso das funções HOLD, RANGE, MAX MIN, REL□ e HIRES consultar o § 4.2

5.2. MEDIÇÃO DE TENSÕES CA, CA+CC

ATENÇÃO

A tensão máxima CA na entrada é 1000V. Não medir tensões que excedam os limites indicados neste manual. A superação dos limites de tensão poderá causar choques elétricos no utilizador e danos no instrumento.

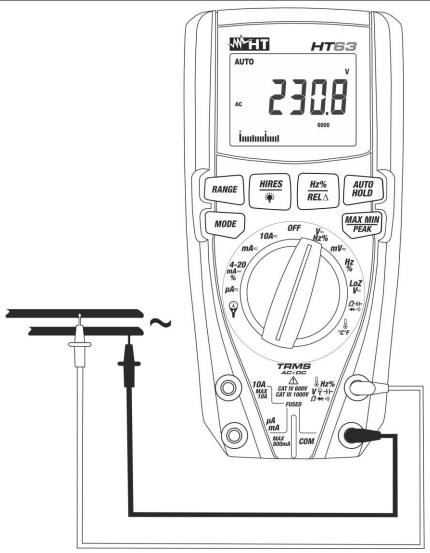


Fig. 3: Uso do instrumento para a medição de Tensões CA

- 1. Selecionar a posição V≂Hz% ou mV≂.
- 2. Premir o botão MODE para visualizar o símbolo "CA" ou "CA+CC" no display.
- 3. Inserir o cabo vermelho no terminal de entrada (Hz% V) ⊢Ω→→) e o cabo preto no terminal de entrada COM.
- 4. Colocar a ponteira vermelha e a ponteira preta respetivamente nos pontos do circuito em exame (ver Fig. 3). O valor da tensão é apresentado no display.
- 5. Se no display aparecer a mensagem "O.L" selecionar uma escala mais elevada.
- 6. Premir o botão Hz%/REL∆ para selecionar as medições "Hz" ou "%" para visualizar os valores da frequência e do Ciclo de Trabalho (Duty Cycle) da tensão na entrada. A barra gráfica não está ativa nestas funções. Premir o botão MODE para voltar à medição de tensão e ativar eventualmente a função ...
- 7. Para o uso das funções HOLD, RANGE, MAX MIN, PEAK, e HIRES e REL consultar o § 4.2

5.3. MEDIÇÃO DE TENSÕES CA, CC, CA+CC COM BAIXA IMPEDÂNCIA (LOZ) ATENÇÃO

A tensão máxima CA/CC na entrada é 600V. Não medir tensões que excedam os limites indicados neste manual. A superação dos limites de tensão poderá causar choques elétricos no utilizador e danos no instrumento.

Fig. 4: Uso do instrumento para a medição de tensões CA/CC com função LoZ

- 1. Selecionar a posição **LoZV≂**. Os símbolos "LoZ" e "CC" aparecem no display.
- 2. Premir o botão MODE para selecionar eventualmente a medição "CA" ou "CA+CC".
- 3. Inserir o cabo vermelho no terminal de entrada Hz% V→ ΓΩ→ () e o cabo preto no terminal de entrada COM
- 4. Colocar a ponteira vermelha e a ponteira preta respetivamente nos pontos do circuito em exame (ver Fig.4) para a medição de tensões CA ou nos pontos com potencial positivo e negativo do circuito em exame (ver Fig.2) para a medição de tensões CC. O valor da tensão é apresentado no display.
- 5. A mensagem "O.L." indica que o valor de tensão CC excede o valor máximo mensurável.
- 6. A visualização do símbolo "-" no display do instrumento indica que a tensão tem sentido oposto em relação à conexão da Fig.2.
- 7. Para o uso das funções HOLD, RANGE, MAX MIN, PEAK, e HIRES e REL consultar o § 4.2.

5.4. MEDIÇÃO DE FREQUÊNCIAS E CICLO DE TRABALHO (DUTY CYCLE)

ATENÇÃO

A tensão máxima CA na entrada é 1000V. Não medir tensões que excedam os limites indicados neste manual. A superação dos limites de tensão poderá causar choques elétricos no utilizador e danos no instrumento.

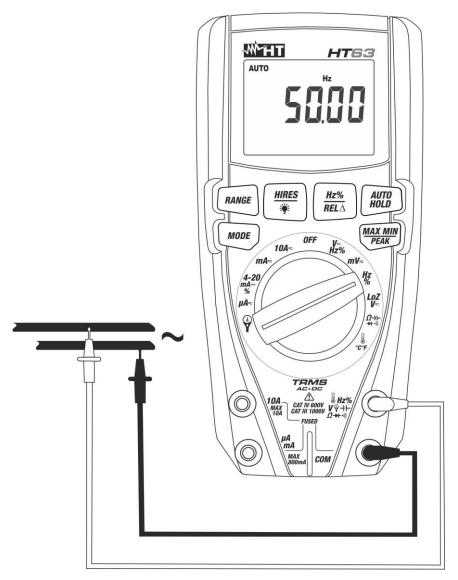


Fig. 5: Uso do instrumento para a medição de Frequências e Ciclo de Trabalho (Duty Cycle)

- 1. Selecionar a posição Hz%.
- Premir o botão Hz%/REL∆ para selecionar as medições "Hz" ou "%" com o objetivo de visualizar os valores da frequência e do Ciclo de Trabalho (Duty Cycle) da tensão na entrada.
- 3. Inserir o cabo vermelho no terminal de entrada ⊕Hz%ΥV→⊢Ω→→) e o cabo preto no terminal de entrada COM.
- 4. Colocar a ponteira vermelha e a ponteira preta respetivamente nos pontos do circuito em exame (ver Fig. 5). O valor da frequência (Hz) ou Ciclo de Trabalho (Duty Cycle) (%) é apresentado no display. A barra gráfica não está ativa nestas funções.
- 5. Se no display aparecer a mensagem "O.L" selecionar uma escala mais elevada.
- 6. Para o uso da função HOLD e HIRES consultar o § 4.2.

5.5. MEDIÇÃO DE RESISTÊNCIAS E TESTE DE CONTINUIDADE

ATENÇÃO

Antes de efetuar qualquer Medição de Resistências verificar se o circuito em exame não está a ser alimentado e se eventuais condensadores presentes estão descarregados.

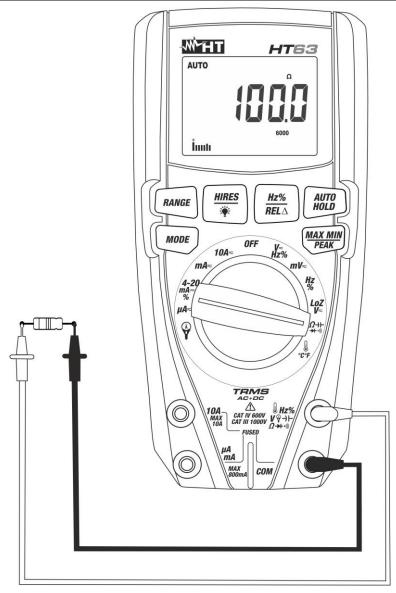


Fig. 6: Uso do instrumento para a medição de Resistências e Teste de Continuidade

- Selecionar a posição Ω→ ト→・ッ)
- 2. Inserir o cabo vermelho no terminal de entrada Hz% V→ ⊢Ω→ ⊕ e o cabo preto no terminal de entrada COM.
- Colocar as ponteiras nos pontos pretendidos do circuito em exame (ver Fig. 6). O valor da resistência é apresentado no display.
- 4. Se no display aparecer a mensagem "O.L" selecionar uma escala mais elevada.
- 5. Premir o botão **MODE** para selecionar a medição "•))" relativa ao Teste de Continuidade e colocar as ponteiras nos pontos pretendidos do circuito em exame.
- 6. O valor da resistência (só indicativo) é apresentado no display expresso em Ω e o instrumento emite um sinal acústico quando o valor da resistência for <35 Ω .
- 7. Para o uso das funções HOLD, RANGE, MAX MIN, REL∆ e HIRES consultar o § 4.2.

5.6. TESTE DE DÍODOS

ATENÇÃO

Antes de efetuar qualquer medição de resistência verificar se o circuito em exame não está a ser alimentado e se eventuais condensadores presentes estão descarregados.

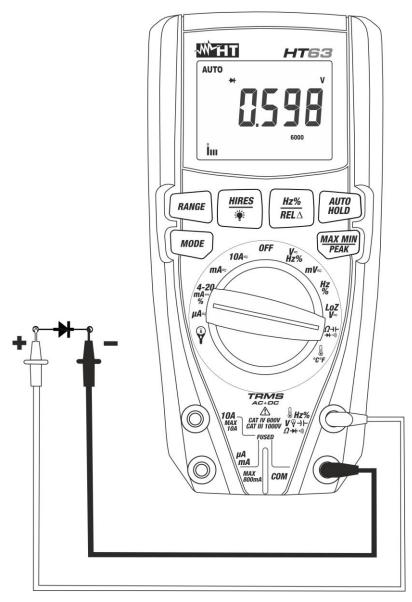


Fig. 7: Uso do instrumento para o Teste de Díodos

- 1. Selecionar a posição Ω→ ト→・・・)).
- 2. Premir o botão MODE para selecionar a medição "→ ".
- 3. Inserir o cabo vermelho no terminal de entrada ⊕Hz%ŶV→⊢Ω→+•)) e o cabo preto no terminal de entrada COM.
- Colocar as ponteiras nas extremidades do díodo em exame (ver Fig. 7) respeitando as polaridades indicadas. O valor da tensão do patamar em polarização direta é apresentado no display.
- 5. Se o valor do patamar de tensão for 0mV a junção P-N do díodo está em curto-circuito.
- 6. Se o instrumento apresenta a mensagem "**O.L**" os terminais do díodo estão invertidos em relação ao indicado na Fig. 7 ou a junção P-N do díodo está danificada.
- 7. Para o uso das funções HOLD e HIRES consultar o § 4.2.

5.7. MEDIÇÃO DE CAPACIDADES

\triangle

ATENÇÃO

Antes de efetuar medições de capacidade em circuitos ou condensadores, retirar a alimentação ao circuito em exame e deixar descarregar todas as capacidades presentes no mesmo. Na ligação entre o multímetro e a capacidade em exame respeitar a correta polaridade (quando solicitado).

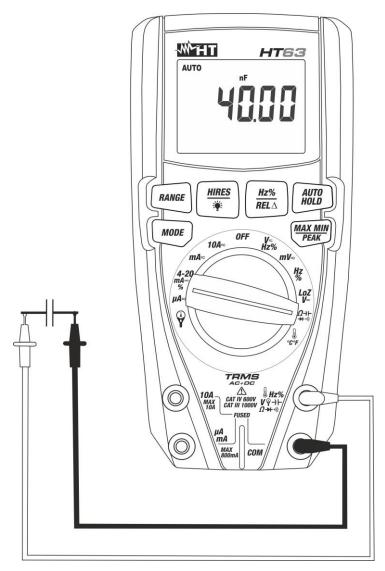


Fig. 8: Uso do instrumento para a medição de Capacidades

- Selecionar a posição Ω→ ト→・ッ).
- 2. Premir o botão **MODE** até visualizar o símbolo "nF" no display.
- 3. Inserir o cabo vermelho no terminal de entrada (Hz% (V→) +Ω→→) e o cabo preto no terminal de entrada COM.
- 4. Premir durante algum tempo o botão Hz%/REL∆ antes de efetuar a medição.
- 5. Colocar as ponteiras nas extremidades do condensador em exame respeitando eventualmente as polaridades positivas (cabo vermelho) e negativas (cabo preto) (ver Fig. 8). O valor da capacidade é apresentado no display. A barra gráfica não está ativa nesta função.
- 6. A mensagem (O.L." indica que o valor da capacidade excede o valor máximo mensurável.
- 7. Para o uso das funções HOLD, e REL∆ consultar o § 4.2.

5.8. MEDIÇÃO DE TEMPERATURAS COM SONDA K

ATENÇÃO

Antes de efetuar qualquer medição de temperatura verificar se o circuito em exame não está a ser alimentado e se eventuais condensadores presentes estão descarregados.

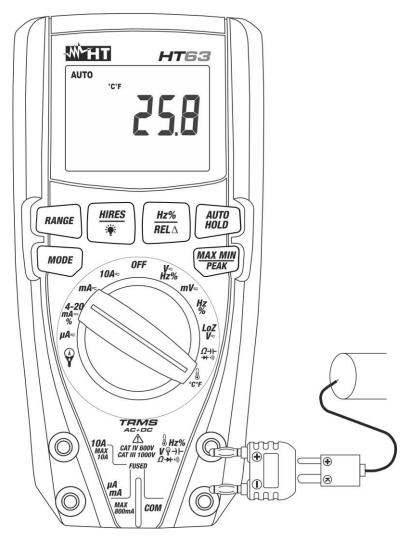


Fig. 9: Uso do instrumento para a medição de Temperaturas

- Selecionar a posição ⊕°C°F.
- 2. Premir o botão **MODE** até aparecer no display o símbolo "°C" ou "°F".
- 3. Inserir o adaptador fornecido nos terminais de entrada (Hz% V→ FΩ→) (polaridade +) e COM (polaridade -) (ver Fig. 9).
- 4. Conectar a sonda tipo K fornecida ou o termopar tipo K opcional (consultar o § 7.3.2) ao instrumento através do adaptador respeitando as polaridades positiva e negativa presentes no mesmo. O valor da temperatura é apresentado no display. A barra gráfica não está ativa nesta função.
- 5. A mensagem "O.L." indica que o valor de temperatura excede o valor máximo mensurável.
- 6. Para o uso da função HOLD consultar o § 4.2.

5.9. MEDIÇÃO DE CORRENTES CC E LEITURA 4-20MA%

ATENÇÃO

A corrente máxima CC na entrada é 10A (entrada **10A**) ou 600mA (entrada **mAμA**). Não medir correntes que excedam os limites indicados neste manual. A superação dos limites de corrente poderá causar choques elétricos no utilizador e danos no instrumento.

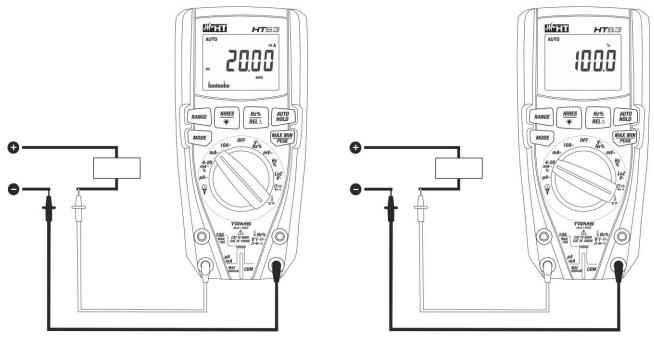


Fig. 10: Uso do instrumento para a medição de Correntes CC, CA+CC e leitura 4-20mA%

- 1. Retirar a alimentação ao circuito em exame.
- Selecionar a posição μA

 , mA

 ou 10A

 para a medição de Correntes CC ou a posição 4-20mA

 , para a leitura 4-20mA%.
- 3. Inserir o cabo vermelho no terminal de entrada **10A** ou no terminal de entrada **mA\muA** e o cabo preto no terminal de entrada **COM**.
- 4. Ligar a ponteira vermelha e a ponteira preta em série com o circuito do qual se pretende medir a corrente respeitando a polaridade e o sentido da corrente (ver Fig. 10).
- 5. Alimentar o circuito em exame.
- 6. O valor da corrente CC (ver Fig. 10 lado esquerdo) é apresentado no display.
- 7. O valor da leitura 4-20mA% (0mA = -25%, 4mA = 0%, 20mA = 100% e 24mA = 125%) (ver Fig. 10 lado direito) é apresentado no display. A barra gráfica não está ativa nesta função.
- 8. Se no display aparecer a mensagem "O.L" foi atingido o valor máximo mensurável.
- 9. A visualização do símbolo "-" no display do instrumento indica que a corrente tem sentido oposto em relação à conexão da Fig. 10.
- 10. Para o uso das funções HOLD, RANGE, MAX MIN, REL∆ e HIRES consultar o § 4.2.

5.10. MEDIÇÃO DE CORRENTES CA, CA+CC

ATENÇÃO

A corrente máxima CA na entrada é 10A (entrada **10A**) ou 600mA (entrada **mAμA**). Não medir correntes que excedam os limites indicados neste manual. A superação dos limites de corrente poderá causar choques elétricos no utilizador e danos no instrumento.

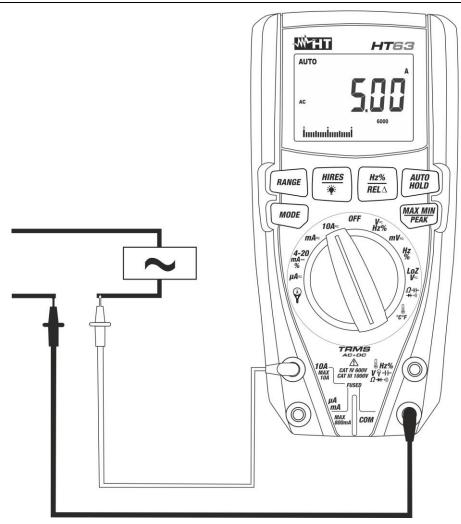


Fig. 11: Uso do instrumento para a medição de Correntes CA

- 1. Retirar a alimentação ao circuito em exame.
- 3. Premir o botão **MODE** para selecionar a medição "CA" ou "CA+CC".
- Inserir o cabo vermelho no terminal de entrada 10A ou no terminal de entrada mAμA e o cabo preto no terminal de entrada COM.
- 5. Ligar a ponteira vermelha e a ponteira preta em série com o circuito do qual se pretende medir a corrente (ver Fig. 11).
- 6. Alimentar o circuito em exame. O valor da corrente é apresentado no display.
- 7. Se no display aparecer a mensagem "O.L" foi atingido o valor máximo mensurável.
- 8. Premir o botão Hz%/REL∆ para selecionar as medições "Hz" ou "%" para visualizar os valores da frequência e do Ciclo de Trabalho (Duty Cycle) da corrente na entrada. A barra gráfica não está ativa nestas funções.
- Para o uso das funções HOLD, RANGE, MAX MIN, PEAK, REL∆ e HIRES consultar o § 4.2.

5.11. MEDIÇÃO DE CORRENTES CC, CA, CA+CC USANDO TRANSDUTORES COM PINÇA

ATENÇÃO

- A corrente máxima mensurável nesta função é 3000A CA ou 1000A CC.
 Não medir correntes que excedam os limites indicados neste manual.
- O instrumento executa a medição seja com o transdutor com pinça flexível (acessório opcional F3000U) seja com outros transdutores com pinça standard da família HT. Para transdutores com conector de saída Hypertac é necessário o adaptador opcional NOCANBA para efetuar a ligação.

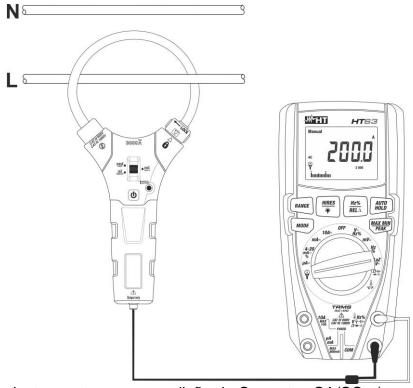


Fig. 12: Uso do instrumento para a medição de Correntes CA/CC c/ transdutor c/ pinça

- Selecionar a posição Y.
- 2. Premir o botão MODE para selecionar a medição "CA", "CC" ou "CA+CC".
- Premir o botão RANGE para selecionar no instrumento a mesma escala definida na pinça entre as opções: 1000mA,10A, 30A,100A,300A,1000A,3000A. Este valor aparece no display durante 2s.
- 4. Inserir o cabo vermelho no terminal de entrada Hz% VV→ LΩ→ De o cabo preto no terminal de entrada COM. Para modelos de transdutores standard (consultar o § 7.3.2) com conector Hypertac usar o adaptador opcional NOCANBA. Para informações sobre o uso dos transdutores com pinça consultar o respetivo manual de instruções.
- 5. Inserir o cabo no interior do toroide (ver Fig. 12). O valor da corrente é apresentado no display.
- 6. Premir o botão Hz%/REL∆ para selecionar as medições "Hz" ou "%" com o objetivo de visualizar os valores da frequência e do Ciclo de Trabalho (Duty Cycle) da corrente na entrada. A barra gráfica não está ativa nestas funções. Premir o botão MODE para voltar à Medição de Correntes e reconfigurar a escala correta premindo o botão RANGE.
- 7. Se no display aparecer a mensagem "O.L" foi atingido o valor máximo mensurável.
- 8. Para as funções HOLD, RANGE, MAX MIN, PEAK, REL∆ e HIRES consultar o § 4.2.

6. MANUTENÇÃO

ATENÇÃO

- Só técnicos qualificados podem efetuar as operações de manutenção.
 Antes de efetuar esta operação retirar todos os cabos dos terminais de entrada.
- Não utilizar o instrumento em ambientes caracterizados por taxas de humidade ou temperatura elevadas. Não o expor diretamente à luz solar.
- Desligar sempre o instrumento após a sua utilização. Quando se prevê não o utilizar durante um período prolongado, retirar a bateria para evitar o derrame de líquidos por parte desta última que podem danificar os circuitos internos do instrumento.

6.1. SUBSTITUIÇÃO DAS PILHAS E FUSÍVEIS INTERNOS

Quando no display LCD aparece o símbolo "====" deve-se substituir as pilhas.

Substituição das pilhas

- 1. Colocar o seletor na posição **OFF** e retirar os cabos dos terminais de entrada.
- 2. Rodar o parafuso de fixação da tampa do compartimento das pilhas da posição "o" para a posição "o" e retirar a mesma.
- 3. Retirar as pilhas e inserir no compartimento as novas pilhas do mesmo tipo (consultar o § 7.1.2) respeitando as polaridades indicadas.
- 4. Recolocar a tampa do compartimento das pilhas e rodar o parafuso de fixação da tampa do compartimento das pilhas da posição "o" para a posição "o".
- 5. Não dispersar no ambiente as pilhas utilizadas. Usar os respetivos contentores para a sua reciclagem.

Substituição fusíveis

- 1. Colocar o seletor na posição **OFF** e retirar os cabos dos terminais de entrada.
- 2. Rodar o parafuso de fixação da tampa do compartimento das pilhas da posição "o" para a posição "o" e retirar a mesma.
- 3. Retirar o fusível danificado e inserir um do mesmo tipo (consultar o § 7.1.2).
- 4. Recolocar a tampa do compartimento das pilhas e rodar o parafuso de fixação da tampa do compartimento das pilhas da posição "o" para a posição "o".

6.2. LIMPEZA DO INSTRUMENTO

Para a limpeza do instrumento utilizar um pano macio e seco. Nunca usar panos húmidos, solventes, água, etc.

6.3. FIM DE VIDA

ATENÇÃO: este símbolo indica que o equipamento, os seus acessórios e as pilhas devem ser recolhidos separadamente e tratados de modo correto.

7. ESPECIFICAÇÕES TÉCNICAS

7.1. CARACTERÍSTICAS TÉCNICAS

Precisão calculada como [%leitura + (nº. dígitos (dgt)*resolução)] a 18°C ÷ 28°C <75%HR

Tensão CC

Escala (*)	Resolução	Precisão	Impedância de entrada	Proteção contra sobrecargas
600.0mV	0.1mV			
6.000V	0.001V	(0.00/loituro , Edat)		
60.00V	0.01V	±(0.9%leitura + 5dgt)	>10MΩ	1000VCC/CArms
600.0V	0.1V			
1000V	1V	\pm (1.2%leitura + 5dgt)		

^(*) Função HIRES não ativa. Com a função HIRES ativa multiplicar x10 os dígitos de precisão.

Tensão CA TRMS

Facala (*)	Dagaluaãa	Precisão (**)		Proteção contra
Escala (*)	Resolução	(50Hz÷1kHz)	(1kHz÷5kHz)	sobrecargas
600.0mV	0.1mV			
6.000V	0.001V		1/2 00/ loiture . Edet	
60.00V	0.01V	\pm (1.0%leitura + 5dgt)	\pm (3.0%leitura + 5dgt)	1000VCC/CArms
600.0V	0.1V			
1000V	1V		Não especificada	

^(*) Função HIRES não ativa. Com a função HIRES ativa multiplicar x10 os dígitos de precisão.

Precisão da função \bigcirc : $\pm (1.5\%$ leitura + 5dgt) (f ≤ 60 Hz), $\pm (3.0\%$ leitura + 5dgt) (60Hz \leq f ≤ 1 kHz), não especificada (f: 1 \div 5kHz) Forma de onda impulsiva da precisão é: $\pm (4.5\%$ leitura + 10dgt) (50Hz \div 1kHz), $\pm (10.0\%$ leitura + 10dgt) (1kHz \div 5kHz)

Tensão CA+ CC TRMS

Escala (*)	Resolução	Precisão (50Hz÷1kHz)	Impedância de entrada	Proteção contra sobrecargas
600.0mV	0.1mV			
6.000V	0.001V			
60.00V	0.01V	±(1.5%leitura + 10dgt)	>10MΩ	1000VCC/CArms
600.0V	0.1V			
1000V	1V			

^(*) Função HIRES não ativa. Com a função HIRES ativa multiplicar x10 os dígitos de precisão.

Tensão CC/CA TRMS com baixa impedância (LoZ)

Escala (*)	Resolução	Precisão (**)	Împedância de entrada	Proteção contra sobrecargas
6.000V	0.001V			
60.00V	0.01V	1/2 00/ laitura (40 dat)	Caraa da Oko	600VCC/CArms
600.0V	0.1V	±(3.0%leitura+40dgt)	Cerca de $3k\Omega$	600VCC/CAIIIS
600V	1V			

^(*) Função HIRES não ativa. Com a função HIRES ativa multiplicar x10 os dígitos de precisão.

Teste de Díodos

Função	Corrente de teste	Tensão máx. em circuito aberto
	<1.5mA	2.8VCC

^(**) Precisão especificada de 5% a 100% da escala de medida e fator de crista CA ≤3, Impedância de entrada: > 10MΩ

Precisão da função PEAK: ±(10%leitura + 30dgt); Tempo de resposta da função PEAK: 1ms

^(**) Precisão CA+CC: ±(3.5%leitura+40dgt)

Corrente CC

Escala (*)	Resolução	Precisão	Proteção contra sobrecargas
600.0μΑ	0.1μΑ		
6000μΑ	1μΑ		Fusível rápido 800mA/1000V
60.00mA	0.01mA	±(1.5%leitura + 5dgt)	Fusivei Tapido 600IIIA/1000V
600.0mA	0.1mA		
10.00A	0.01A		Fusível rápido 10A/1000V

^(*) Função HIRES não ativa. Com a função HIRES ativa multiplicar x10 os dígitos de precisão.

Leitura 4-20mA%

Escala (*)	Resolução	Precisão	Correspondência
-25%÷125%	0.1%	±(50dgt)	0mA=-25%, 4mA=0%, 20mA=100%, 24mA=125%

^(*) Função HIRES não ativa. Com a função HIRES ativa multiplicar x10 os dígitos de precisão.

Corrente CA TRMS

Foods (*)	Pacaluaãa	Precisa	ão (**)	Drotosão contro cobrecersos
Escala (*) Resolução		(50Hz÷1kHz) (1kHz÷5kHz)		Proteção contra sobrecargas
600.0μΑ	0.1μΑ			
6000μΑ	1μΑ			Fusível rápido 800mA/1000V
60.00mA	0.01mA	\pm (2.5%leitura + 5dgt)	\pm (3.5%leitura+5dgt)	T dsiver rapido 600/11/4/ 1000 v
600.0mA	0.1mA			
10.00A	0.01A			Fusível rápido 10A/1000V

^(*) Função HIRES não ativa. Com a função HIRES ativa multiplicar x10 os dígitos de precisão.

Precisão da função PEAK: ±(10%leitura + 30dgt), Precisão CA+CC: ±(2.8%leitura+5dgt) (50Hz ÷ 1kHz)

Precisão da forma de onda impulsiva: ±(4.5%leitura + 10dgt) (50Hz÷1kHz), ±(10.0%leitura + 10dgt) (1kHz÷5kHz)

Corrente CC com transdutor com pinça

Escala (*)	Relação de saída	Resolução	Precisão (**)	Proteção contra sobrecargas
1000mA	1000mV/1000mA	1mA		
10A	100mV/1A	0.01A		
30A	TOUTIV/TA	0.01A	±(1.5%leitura + 6dgt)	1000VCC/CArms
100A	10m2\//1A	0.1A		
300A	10mV/1A	0.1A		
1000A	1mV/1A	1A		
3000A	IIIIV/IA	IA		

^(*) Função HIRES não ativa. Com a função HIRES ativa multiplicar x10 os dígitos de precisão.

Corrente CA TRMS com transdutor com pinca

Corrente C	Corrente CA TRMS com transdutor com pinça							
Escala (*)	Relação de saída	Resolução	Precisão (**,***) (50Hz÷1kHz)	Proteção contra sobrecargas				
1000mA	1000mV/1000mA	1mA						
10A	100m\//1 A	0.014						
30A	100mV/1A	0.01A						
100A	10mV/1A	0.1A	±(2.5%leitura + 10dgt)	1000VCC/CArms				
300A	TOTTIV/TA	0.1A						
1000A	1mV/1A	1A						
3000A	IIIIV/IA	IA						

^(*) Função HIRES não ativa. Com a função HIRES ativa multiplicar x10 os dígitos de precisão. (**) Precisão referida apenas ao instrumento sem transdutor (***) Precisão especificada de 5% a 100% da escala de medida

Precisão da função PEAK: ±(10%leitura + 30dgt), Corrente CA+CC TRMS: precisão (50Hz÷1kHz): ±(3.0%leitura + 10dgt)

Precisão da forma de onda impulsiva: ±(4.5%leitura + 10dgt) (50Hz÷1kHz)

^(**) Precisão especificada de 5% a 100% da escala de medida.

^(**) Precisão referida apenas ao instrumento sem transdutor

Resistência e Teste de Continuidade

Escala (*)	Resolução	Precisão	Besouro	Proteção contra sobrecargas
600.0Ω	0.1Ω	\pm (2.0%leitura + 9dgt)		
6.000 k Ω	$0.001 \mathrm{k}\Omega$			
60.00kΩ	$0.01 \mathrm{k}\Omega$	\pm (1.2%leitura + 5dgt)	-250	1000VCC/CArms
600.0kΩ	0.1kΩ		<35Ω	1000VCC/CAIIIIS
$6.000 \mathrm{M}\Omega$	$0.001 ext{M}\Omega$	1/2 00/ loiture 1 10dat)		
0.00 M Ω	$0.01 ext{M}\Omega$	\pm (2.0%leitura + 10dgt)		

^(*) Função HIRES não ativa. Com a função HIRES ativa multiplicar x10 os dígitos de precisão.

Frequência (circuitos elétricos)

Escala (*)	Resolução	Precisão	Proteção contra sobrecargas
40.00Hz ÷ 10kHz	0.01Hz	±(0.5%leitura)	1000VCC/CArms

^(*) Função HIRES não ativa. Com a função HIRES ativa multiplicar x10 os dígitos de precisão; Sensibilidade: 15Vrms

Frequência (circuitos eletrónicos)

r reductiona (circultice distributed)				
Escala (*)	Resolução	Precisão	Proteção contra sobrecargas	
60.00Hz	0.01Hz	_		
600.0Hz	0.1Hz			
6.000kHz	0.001kHz		1000VCC/CArms	
60.00kHz	0.01kHz	\pm (1.0%leitura + 2dgt)		
600.0kHz	0.1kHz			
6.000MHz	0.001MHz			
10.00MHz	0.01MHz			

^(*) Função HIRES não ativa. Com a função HIRES ativa multiplicar x10 os dígitos de precisão .

Ciclo de Trabalho (Duty Cycle)

Escala (*)	Resolução	Precisão
0.1% ÷ 99.9%	0.1%	±(1.2%leitura + 2dgt)

^(*) Função HIRES não ativa. Com a função HIRES ativa multiplicar x10 os dígitos de precisão. Escala de frequência do impulso: 5Hz ÷ 10kHz, Amplitude do impulso: ±5V (100μs ÷ 100ms)

Capacidade

· · · ·	-				
Escala Resolução		Precisão	Proteção contra sobrecargas		
60.00nF	0.01nF	1/2 F0/ loiture 1 10 det)			
600.0nF	0.1nF	±(3.5%leitura + 10dgt)			
6.000μF	0.001μF		4000\/00/00		
60.00μF	0.01μF	±(2.5%leitura + 10dgt)	1000VCC/CArms		
600.0μF	0.1μF				
6000μF	1μF	±(3.5%leitura + 10dgt)			

Temperatura com sonda K

Escala	Resolução	Precisão (*)	Proteção contra sobrecargas
-40.0°C ÷ 600.0°C	0.1°C	1/2 00/ loiture 1 3°C)	
600°C ÷ 760°C	1°C	±(2.0%leitura + 3°C)	1000VCC/CArms
-58.0°F ÷ 600.0°F	0.1°F	1/2 00/ loiture L E ESE)	1000VCC/CAIIIS
600°F ÷ 1400°F	1°F	±(2.0%leitura+ 5.5°F)	

^(*) Precisão do instrumento sem sonda

7.1.1. Normas de referência

Segurança/EMC: IEC/EN61010-1 / IEC/EN 61326-1

Isolamento: duplo isolamento

Nível de Poluição: 2

Categoria de sobretensão: CAT IV 600V, CAT III 1000V

Sensibilidade:>2.0Vrms (@20%÷80% Ciclo de Trabalho (Duty Cycle)) f<100kHz; >5Vrms (@ 20%÷80% Ciclo de Trabalho (Duty Cycle)) e f>100kHz

7.1.2. Características gerais

Características mecânicas

Dimensões (L x A x H): 175 x 85 x 55mm

Peso (pilhas incluídas): 360g Proteção mecânica: IP40

Alimentação

Tipo de pilhas: 4x1.5V pilhas tipo AAA IEC LR03

Indicação de pilhas descarregadas: símbolo "====" no display

Autonomia das pilhas: cerca de 18h (retroiluminação ON), cerca de

60h (retroiluminação OFF)

Desligar automático: após 15min de não utilização (desativável) Fusíveis: F10A/1000V, 10 x 38mm (entrada **10A**)

F800mA/1000V, 6 x 32mm (entrada **mAµA**)

Display

Conversão: TRMS

Características: 3½ LCD, 6000 pontos, sinal, ponto decimal

41/2 LCD, 60000 pontos, sinal, ponto decimal,

retroiluminação e gráfico de barras

Frequência de amostragem: 3 vezes/s

7.2. AMBIENTE

7.2.1. Condições ambientais de utilização

Temperatura de referência: $18^{\circ}\text{C} \div 28^{\circ}\text{C}$ Temperatura de utilização: $5^{\circ}\text{C} \div 40^{\circ}\text{C}$ Humidade relativa admitida: $<80^{\circ}\text{HR}$ Temperatura de armazenamento: $<20^{\circ} \div 60^{\circ}\text{C}$ Humidade de armazenamento: $<80^{\circ}\text{HR}$ Altitude máx. de utilização: 2000°m

Este instrumento está conforme os requisitos da Diretiva Europeia sobre baixa tensão 2014/35/EU (LVD) e da Diretiva EMC 2014/30/EU

Este instrumento está conforme os requisitos da Diretiva Europeia 2011/65/CE (RoHS) e da Diretiva Europeia 2012/19/CE (WEEE)

7.3. ACESSÓRIOS

7.3.1. Acessórios fornecidos

- Par de ponteiras com ponta 2/4mm
- Adaptador + sonda do tipo K
- Pilhas
- Bolsa para transporte
- Manual de instruções

7.3.2. Acessórios opcionais

•	Sonda tipo K para medir a temperatura do ar e gases	Cod. TK107
•	Sonda tipo K para medir a temperatura de substâncias semi-sólidas	Cod. TK108
•	Sonda tipo K para medir a temperatura de líquidos	Cod. TK109
•	Sonda tipo K para medir a temperatura de superfícies	Cod. TK110
•	Sonda tipo K para medir a temperatura de superfícies c/ ponta a 90°	Cod. TK111
•	Transdutor com pinça flexível CA 30/300/3000A	Cod. F3000U
•	Transdutor com pinça standard CA 1-100-1000A/1V	Cod. HT96U
•	Transdutor com pinça standard CA 10-100-1000A/1V	Cod. HT97U
•	Transdutor com pinça standard CC 1000A/1V	Cod. HT98U
•	Adaptador para ligação a pinças standard	Cod. NOCANBA

8. ASSISTÊNCIA

8.1. CONDIÇÕES DE GARANTIA

Este instrumento está garantido contra qualquer defeito de material e fabrico, em conformidade com as condições gerais de venda. Durante o período da garantia, as partes defeituosas podem ser substituídas, mas ao construtor reserva-se o direito de reparar ou substituir o produto.

No caso de o instrumento ser devolvido ao revendedor, o transporte fica a cargo do Cliente. A expedição deverá ser, em qualquer caso, acordada previamente. Anexa à guia de expedição deve ser inserida uma nota explicativa com os motivos do envio do instrumento. Para o transporte utilizar apenas a embalagem original; qualquer dano provocado pela utilização de embalagens não originais será atribuído ao Cliente. O construtor não se responsabiliza por danos causados por pessoas ou objetos.

A garantia não é aplicada nos seguintes casos:

- Reparação e/ou substituição de acessórios e baterias (não cobertos pela garantia).
- Reparações necessárias provocadas por utilização errada do instrumento ou da sua utilização com aparelhagens não compatíveis.
- Reparações necessárias provocadas por embalagem não adequada.
- Reparações necessárias provocadas por intervenções executadas por pessoal não autorizado.
- Modificações efetuadas no instrumento sem autorização expressa do construtor.
- Utilizações não contempladas nas especificações do instrumento ou no manual de instruções

O conteúdo deste manual não pode ser reproduzido sem autorização expressa do construtor.

Todos os nossos produtos são patenteados e as marcas registadas. O construtor reserva o direito de modificar as especificações e os preços dos produtos, se isso for devido a melhoramentos tecnológicos.

8.2. ASSISTÊNCIA

Se o instrumento não funciona corretamente, antes de contactar o Serviço de Assistência, verificar o estado das baterias e dos cabos e substituí-los se necessário.

Se o instrumento continuar a não funcionar corretamente, verificar se o procedimento de utilização do mesmo está conforme o indicado neste manual.

No caso de o instrumento ser devolvido ao revendedor, o transporte fica a cargo do Cliente. A expedição deverá ser, em qualquer caso, acordada previamente.

Anexa à guia de expedição deve ser inserida uma nota explicativa com os motivos do envio do instrumento.

Para o transporte utilizar apenas a embalagem original; qualquer dano provocado pela utilização de embalagens não originais será atribuído ao Cliente.

Via della Boaria, 40 48018 – Faenza (RA) – Italy Tel: +39-0546-0621002 (4 linee r.a.) Fax: +39-0546-621144 Email: ht@htitalia.it http://www.htitalia.com

MORGADO & CA., SA ESTRADA DA CIRCUNVALAÇÃO, 3558 / 3560 4435-186 RIO TINTO • TEL 229 770 600 • FAX 229 770 699 PORTUGAL

COORDENADAS N41.180946° W8.578015°

GERAL@MORGADOCL.PT WWW.MORGADOCL.PT

DELEGAÇÃO CENTRO VALES DA PEDRULHA

APARTADO 8057 3026-901 COIMBRA TEL 239 497 220 • FAX 239 497 229

DELEGAÇÃO SUL ALAMEDA DOS OCEANOS, N.º5 • ESC.4 1990-207 LISBOA TEL 219 898 750 • FAX 219 898 759